
sg151.y B-splines and splines parameterized by their values at reference points

Author: Roger Newson, King’s College London, UK. Email: roger.newson@kcl.ac.uk Date: 21 December 2004.

Abstract

Two programs are presented for generating a basis of splines in an X-variable, to be used by regression programs
to fit spline models. The first, bspline, generates a basis of Schoenberg B-splines, which avoid the stability problems
associated with plus-functions. The second, frencurv, generates a basis of reference splines, whose parameters in the
regression model are simply values of the spline at reference points on the X-axis. These programs are complementary
to existing spline programs in Stata, and do not supersede them.

Key phrases

Spline; B-spline; interpolation; quadratic; cubic.

Syntax

bspline
[
newvarlist

][
if exp

][
in range

]
, xvar(varname)

[
power(#)

knots(numlist) noexknot generate(prefix) type(type) labfmt(%fmt)
]

frencurv
[
newvarlist

][
if exp

][
in range

]
, xvar(varname)

[
power(#) refpts(numlist) noexref

knots(numlist) noexknot generate(prefix) type(type) labfmt(%fmt)
]

Description

bspline generates a basis of B-splines in an X-variable, based on a list of knots, for use in fitting a regression
model containing a spline in the X-variable. frencurv (“French curve”) generates a basis of reference splines, for
use in fitting a regression model, with the property that the fitted parameters will be values of the spline at a list
of reference points on the X-axis. Usually, the regression command is called with the noconst option.

Options for bspline and frencurv

xvar(varname) specifies the X-variable on which the splines are based.

power(#) (a non-negative integer) specifies the power (or degree) of the splines, eg zero for constant, 1 for linear, 2
for quadratic, 3 for cubic, 4 for quartic or 5 for quintic. If absent, zero is assumed.

knots(numlist) specifies a list of at least 2 ascending knots, on which the splines are based. If knots are absent,
then bspline will initialize the list to the minimum and maximum of xvar, and frencurv will create a list
of knots equal to the reference points (in the case of odd-degree splines such as a linear, cubic or quintic) or
midpoints between reference points (in the case of even-degree splines such as constant, quadratic or quartic).

noexknot specifies that the original knot list is not to be extended. If noexknot is not specified, then the knot list
is extended on the left and right by power extra knots on each side, spaced by the distance between the first
and last 2 original knots, respectively.

generate(prefix) specifies a prefix for the names of the generated splines, which (if there is no newvarlist) will be
named as prefix1. . .prefixN, where N is the number of splines.

type(type) specifies the storage type of the splines generated (float or double). If type is given as anything else
(or not given), then it is set to float.

labfmt(%fmt) specifies the format to be used in the variable labels for the generated splines. If absent, then it is
set to the format of the xvar.

Options for frencurv only

refpts(numlist) specifies a list of at least 2 ascending reference points, with the property that, if the splines are
used in a regression model, then the fitted parameters will be values of the spline at those points. If refpts is
absent, then the list is initialized to two points, equal to the minimum and maximum of xvar.

noexref specifies that the original reference list is not to be extended. If noexref is not specified, then the reference
list is extended on the left and right by int(power/2) extra reference points on each side, spaced by the distance
between the first and last 2 original reference points, respectively. If noexref and noexknot are both specified,
then the number of knots must be equal to the number of reference points plus power+1.

2 Post-publication update RBN-3

Remarks

The options described above appear complicated, but imply simple defaults for most users. Advanced users and
programmers are given the power to specify a comprehensive choice of non-default splines. The splines are either
given the names in the newvarlist (if present), or (more usually) generated as a list of numbered variables, prefixed
by the generate option. (The newvarlist is intended mainly for programmers, and allows them to store the splines
in temporary variables with temporary names.)

Methods and Formulas

The principles and definitions of B-splines are given in de Boor (1978) and Ziegler (1969). Practical applications
in chemistry are described in Wold (1971 and 1974). They are used in signal processing, and are associated with a
wavelet transformation (Unser, Aldroubi and Eden, 1992).

Splines are a method of defining models regressing a scalar Y -variate with respect to a scalar X-variate. By
definition, a k’th degree spline is defined with reference to a set of q knots s1 < s2 < . . . < sq, dividing the X-axis
into intervals of the form [si, si+1). In each of those intervals, the regression is a k’th degree polynomial in X (usually
a different one in each interval), but the polynomials in any two contiguous intervals have the same j’th derivatives
at the knot separating the two intervals, for j from zero to k−1. By convention, the zero’th derivative is the function
itself, so a zero’th degree spline is simply a right-continuous step function, and a first-degree spline is a simple linear
interpolation of values between the knots. (By convention, the intervals [si, si+1) are closed on the left and open
on the right, but this convention only matters for splines of degree zero, which, by convention, are right-continuous
rather than left-continuous.)

Splines can be defined using plus-functions. For a power k and a knot s, the k’th power plus-function at s is
defined as

Pk(x; s) =
{

(x− s)k, x ≥ s,
0, x < s.

(1)

The plus-functions are a basis for the space of splines. That is to say, for any k’th degree spline S(·), with knots
s1 < s2 < . . . < sq, there exists a q-vector α such that, for any x,

S(x) =
q∑

j=1

αjPk(x; sj). (2)

It might seem that, to fit a spline in a covariate X to a Y -variate, all we have to do is to define a design matrix U ,
such that Uij = Pk(xi; sj), and fit β as a vector of regression coefficients. This is not a good idea, for two reasons.
Firstly, there are problems with stability, as Pk(x; s) will be very large for k > 1 and x much greater than s. Secondly,
the β-parameters estimated will not be easy to explain in words to a non-mathematician. The first problem was
solved with the introduction of B-splines by I. J. Schoenberg in the 1960s, and these are calculated by bspline.
The second problem is solved using frencurv, which calls bspline, and then transforms the B-splines, so that the
regression parameters will simply be values of the spline at reference points.

The B-splines define an alternative basis of the splines with a given set of knots. Ziegler (1969) defines the
B-spline for a set of k + 2 knots s1 < s2 < ... < sk+2 as

B(x; s1, . . . , sk+2) = (k + 1)
k+2∑

j=1

 ∏

1≤h≤k+2,h6=j

(sh − sj)

−1

Pk(x; sj). (3)

The B-spline (3) is positive for x in the open interval (s1, sk+2), and zero for other x. If the sj are part of an
extended set of knots extending forwards to +∞ and backwards to −∞, then the set of B-splines based on sets of
k + 2 consecutive knots forms a basis of the set of all k’th-degree splines defined on the full set of knots. Figure 1
shows the constant, linear, quadratic and cubic B-splines originating at zero and corresponding to unit knots.

For the purposes of bspline and frencurv, I have taken the liberty of redefining B-splines by scaling the
B(x; s1, . . . , sk+2) of (3) by a factor equal to the mean distance between two consecutive knots, to arrive at the
scale-invariant B-spline

A(x; s1, . . . , sk+2) =
sk+2 − s1

k + 1
B(x; s1, . . . , sk+2) =

{ ∑k+1
j=1

∏k+2
h=1 φjh(x), if s1 ≤ x < sk+2,

0, otherwise,

Post-publication update 3

where the functions φjh(·) are defined by

φjh(x) =

1, if h = j,
(sk+2 − s1)/(sh − sj), if h = j + 1,
P1(x; sj)/(sh − sj), otherwise.

(4)

The scaled B-spline A(x; s1, . . . , sk+2) has the advantage that it is dimensionless, being a sum of products of the
dimensionless quantities φhj(x). That is to say, it is unaffected by the scale of units of the X-axis, and therefore has the
same values, whether x is time in millennia or time in nanoseconds. The original Ziegler B-spline B(x; s1, . . . , sk+2)
is expressed in units of x−1. Therefore, if the scaled B-spline A(x; s1, . . . , sk+2) appears in a design matrix, then its
regression coefficient is expressed in units of the Y -variate, whereas, if the original B-spline B(x; s1, . . . , sk+2) appears
in a design matrix, then its regression coefficient is expressed in Y -units multiplied by X-units, and will be difficult
to interpret, even for a mathematician. The B-splines computed by bspline are therefore the A(x; s1, . . . , sk+2),
and users who prefer the original Ziegler B-splines must scale them by (k + 1)/(sk+2 − s1). (This factor happens to
be one for splines with unit-spaced knots, such as those in Figure 1.)

C
o
n
s
ta

n
t
B

−
s
p
lin

e
 o

n
 [
0
,1

)

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

L
in

e
a
r

B
−

s
p
lin

e
 o

n
 [
0
,2

)

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

Q
u
a
d
ra

ti
c
 B

−
s
p
lin

e
 o

n
 [
0
,3

)

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

C
u
b
ic

 B
−

s
p
lin

e
 o

n
 [
0
,4

)

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

Figure 1. B-splines originating at zero with unit knots.

Given n data points, a Y -variate, an X-covariate, and a set of q + k + 1 consecutive knots sh < . . . < sh+q <
. . . < sh+q+k, we can regress the Y -variate with respect to a k’th degree spline in X by defining a design matrix V ,
with one row for each of the n data points and one column for each of the first q knots, such that

Vij = A(xi; sh+j−1, . . . , sh+j+k). (5)

We can then regress the Y -variate with respect to the design matrix V , and compute a vector β of regression
coefficients, such that V β is the fitted spline. The parameter βj measures the contribution to the fitted spline of the
B-spline originating at the knot sh+j−1 and terminating at the knot sh+j+k. There will be no stability problems
such as we are likely to have with the original plus-function basis, as each B-spline is bounded, and localized in its
effect.

It is important to define enough knots. If the sequence of knots {sj} extends to +∞ on the right and to −∞
on the left, then the k’th degree B-splines A(·; sh+j−1, . . . , sh+j+k) on sets of k + 2 consecutive knots are a basis for
the full space of k’th degree splines on the full set of knots. If S(·) is one of these splines, and [sj , sj+1) is an interval
between consecutive knots, then the values of S(x) in the interval are affected by the k + 1 B-splines originating
at the knots sj−k, . . . , sj and terminating at the knots sj+1, . . . , sj+k+1. It follows that, if we start by specifying a

4 Post-publication update RBN-3

sequence of knots s0 < . . . < sm, and we want to fit a spline for values of x in the interval [s0, sm), then we must
also use k extra knots s−k < . . . < s−1 to the left of s0, and k extra knots sm+1 < . . . < sm+k to the right of sm, to
define the m + k consecutive B-splines affecting S(x) for x in the interval [s0, sm). These m + k B-splines originate
at the knots s−k, . . . , sm−1, and terminate at the knots s1, . . . , sm+k, respectively. Any spline S(·), in the full space
of k’th degree splines defined using the full set of knots, is equal to a linear combination of these m + k B-splines
in the interval [s0, sm), which we will denote as the completeness region for splines which are linear combinations of
these m + k B-splines. These linear combinations are zero for x < s−k and x ≥ sm+k, and “incomplete” in the outer
regions [s−k, s0) and [sm, sm+k), in which the spline is “returning to zero”.

bspline and frencurv assume, in default, that the knots option specified by the user is only intended to span
the completeness region, and that the specified knots correspond to the s0, . . . , sm. In default, bspline and frencurv
generate k extra knots on the left, with spacing equal to the difference between the first two knots, and k extra
knots on the right, with spacing equal to the difference between the last two knots. If the user specifies the option
noexknot, then bspline assumes that the user has specified the full set of knots, corresponding to s−k, . . . , sm+k,
and does not generate any new knots. This allows users to specify their own spacing for the outer knots if they wish,
but makes the specification of knots simpler in the default case, because users do not have to count the extra outer
knots for themselves.

The B-spline regression parameters are expressed in units of the Y -variable, but they are not easy to interpret.
If we have calculated the n × q matrix V of B-splines as in (5), and we also have a set of q reference X-values
r1 < r2 < . . . < rq, then we might prefer to re-parameterize the spline by its values at the rj . To do this, we first
calculate a q × q square matrix W , defined such that

Wij = A(ri; sh+j−1, . . . , sh+j+k), (6)

the value of the j’th B-spline at the i’th reference point. If β is the (column) q-vector of regression coefficients with
respect to the B-splines in V , and γ is the (column) q-vector of values of the spline at the reference points, then

γ = Wβ. (7)

If W is invertible, then the n-vector of values of the fitted spline at the data points is

V β = V W−1Wβ = V W−1γ = Zγ, (8)

where Z = V W−1 is a transformed n× q design matrix, whose columns contain values of a set of reference splines,
for the estimation of the reference-point spline values γ.

The choice of reference points is open to the user, and constrained mainly by the requirement that the matrix
W is invertible. This implies that each of the q B-splines must be positive for at least one of the q reference values,
and that each reference value must have at least one positive B-spline value. A natural choice of reference values
might be one in the mid-range of each B-spline, possibly the central knot for an odd-degree B-spline (such as a
linear, cubic or quintic), or the mid-point between the two central knots for an even-degree B-spline (such as a
constant, quadratic or quartic). This choice has the consequence that, for a spline of degree k, there will be int(k/2)
reference points outside the spline’s completeness region on the left, and another int(k/2) reference points outside the
spline’s completeness region on the right, where int(·) is the truncation (or “integer-part”) function. The parameters
corresponding to these “extra” reference points will not be easy to explain to non-mathematicians, as they describe
the behaviour of the spline as it returns to zero outside its completeness region. However, for a quadratic or cubic
spline, there is only one such external reference Y -value at each end of the range.

By default (if the user provides no knots option), frencurv starts with the reference points originally provided
(which default to the minimum and maximum of xvar if no refpts are provided), and chooses knots “appropriately”.
For an odd degree spline (power odd), the knots are initialized to the original reference points themselves. For an
even degree spline (power even), the knots are initialized to mid-points corresponding to the original reference points.
That is to say, if there are m original reference points r1 < . . . < rm, and power is even, then the original knots
s0 < . . . < sm are initialized to

sj =

r1 − (r2 − r1)/2, if j = 0,
(rj + rj+1)/2, if 1 ≤ j ≤ m− 1,
rm + (rm − rm−1)/2, if j = m.

(9)

Post-publication update 5

C
o
n
s
ta

n
t
s
p
lin

e
 a

t
4

0 1 2 3 4 5 6 7 8

−0.25

0.00

0.25

0.50

0.75

1.00

L
in

e
a
r

s
p
lin

e
 a

t
4

0 1 2 3 4 5 6 7 8

−0.25

0.00

0.25

0.50

0.75

1.00

Q
u
a
d
ra

ti
c
 s

p
lin

e
 a

t
4

0 1 2 3 4 5 6 7 8

−0.25

0.00

0.25

0.50

0.75

1.00

C
u
b
ic

 s
p
lin

e
 a

t
4

0 1 2 3 4 5 6 7 8

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 2. Reference splines at 4 with unit reference points.

frencurv assumes, by default, that the reference points initially provided are all in the completeness region, and
adds int(k/2) extra reference points to the left, spaced by the difference between the first two original reference points,
and int(k/2) extra reference points to the right, spaced by the difference between the last two original reference
points, where k is specified by the power option. If noexref is specified, then the original refpts are assumed to
be the complete set, and it is the user’s responsibility to choose sensible ones. In either case, the original knots are
extended on the left and right as described above, unless noexknot is specified. (These rules seem complicated, but
lead to sensible defaults if the naive user specifies a list of reference points and naively expects them to be in the
completeness region of the spline, while preserving the ability of advanced users to specify exactly what they want
at their own risk.)

Figure 2 shows the constant, linear, quadratic and cubic reference splines corresponding to a reference point
at 4, assuming unit reference points and default knots (equal to reference points for odd degree and inter-reference
midpoints for even degree). Note that each spline is one at its own reference point, and zero at all other reference
points. They are similar to (but not the same as) the B-spline wavelets of Unser et al. (1992).

Example

In the auto data, we can use frencurv and regress (with the noconst option) to fit a cubic spline for miles
per gallon with respect to weight:

6 Post-publication update RBN-3

. frencurv,xvar(weight) refpts(1760(770)4840) gen(cs) power(3)

. describe cs*
14. cs1 float %8.4f Spline at 990 (INCOMPLETE)
15. cs2 float %8.4f Spline at 1,760
16. cs3 float %8.4f Spline at 2,530
17. cs4 float %8.4f Spline at 3,300
18. cs5 float %8.4f Spline at 4,070
19. cs6 float %8.4f Spline at 4,840
20. cs7 float %8.4f Spline at 5,610 (INCOMPLETE)

. regress mpg cs*,noconst robust
Regression with robust standard errors Number of obs = 74

F(7, 67) = 618.91
Prob > F = 0.0000
R-squared = 0.9792
Root MSE = 3.3469

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--

cs1 | 11.82559 15.56642 0.760 0.450 -19.24512 42.89629
cs2 | 29.21133 1.761704 16.581 0.000 25.69495 32.72771
cs3 | 22.65796 .7625134 29.715 0.000 21.13597 24.17994
cs4 | 19.4749 .610094 31.921 0.000 18.25715 20.69266
cs5 | 15.51593 .8409023 18.452 0.000 13.83748 17.19437
cs6 | 10.60747 1.585487 6.690 0.000 7.442828 13.77212
cs7 | -28.19347 21.59599 -1.305 0.196 -71.29924 14.91229

--

We have chosen the reference points (arbitrarily) to be equally spaced from the minimum of weight (1,760
pounds) to the maximum of weight (4,840 pounds). In default, frencurv ensures that the spline is complete in the
range of X-values spanned by the original reference points provided by the user. The describe command lists the
reference splines, with their labels. Note that frencurv has added two extra reference points outside the spline’s
completeness region (at weights of 990 and 5,610 pounds), and indicated this incompleteness in the variable labels.
The coefficients fitted by regress (with the noconst option) are simply the fitted values of mpg at the reference
points. Note that the ones corresponding to the splines cs2 to cs6 have “sensible” values, corresponding to the
expected levels of mpg at the appropriate value of weight, whereas the ones corresponding to cs1 and cs7 have
“nonsense” values, because they correspond to reference “weights” extrapolated off the edge of the range of sensible
weight values. This is the price we pay for making all reference points equal to knots of the cubic spline. Figure 3
shows observed and fitted values of mpg, plotted against weight. The fitted curve is calculated using predict (see
[R] predict), and is interpolated cubically between the reference points.

The frencurv parameterization allows us to use lincom to calculate confidence intervals for differences (or other
contrasts) between the values of the spline at different reference points. Here, we estimate the difference between
expected mileage at weights of 2,530 and 4,070 pounds:

. lincom cs3-cs5
(1) cs3 - cs5 = 0.0

--
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--
(1) | 7.142029 1.058829 6.745 0.000 5.028598 9.25546

--

We see that cars weighing 2,530 pounds are expected to travel 5.03 to 9.26 more miles per gallon than cars
weighing 4,070 pounds. We can, instead, choose an alternative set of reference points, using noexref and specifying
our own knots. The initial knots are the same initial knots as in the previous model (where they were also reference
points), namely 5 equally spaced values from the minimum to the maximum of weight. However, the new reference
points are 7(= 5+2) equally spaced values covering the same range. The knots and the reference points are therefore
out of synchrony, but the reference points are now all in the completeness region of the spline, because they are in
the range spanned by the initial knots. (Remember that, in default, bspline and frencurv add new knots on the
left and right to make the spline complete over the range of the original knots.) The model is exactly the same model
as before (because a spline model is defined by the knots), but the parameters are now all sensible within-range mpg
values, which non-technical people can understand. Note that we have used labfmt to handle the non-integer values
of the reference points in the variable labels.

Post-publication update 7

. frencurv,xvar(weight) refpts(1760(513.33333)4840) noexr k(1760(770)4840) gen(
> sp) power(3) labfmt(%7.2f)
. describe sp*

22. sp1 float %8.4f Spline at 1760.00
23. sp2 float %8.4f Spline at 2273.33
24. sp3 float %8.4f Spline at 2786.67
25. sp4 float %8.4f Spline at 3300.00
26. sp5 float %8.4f Spline at 3813.33
27. sp6 float %8.4f Spline at 4326.67
28. sp7 float %8.4f Spline at 4840.00

. regress mpg sp*,noconst robust
Regression with robust standard errors Number of obs = 74

F(7, 67) = 618.91
Prob > F = 0.0000
R-squared = 0.9792
Root MSE = 3.3469

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--

sp1 | 29.21133 1.761704 16.581 0.000 25.69495 32.72771
sp2 | 25.89924 1.073405 24.128 0.000 23.75671 28.04177
sp3 | 20.98226 .7479685 28.052 0.000 19.4893 22.47521
sp4 | 19.4749 .610094 31.921 0.000 18.25715 20.69266
sp5 | 15.97982 .5560974 28.736 0.000 14.86985 17.0898
sp6 | 16.74691 1.934879 8.655 0.000 12.88487 20.60894
sp7 | 10.60747 1.585487 6.690 0.000 7.442828 13.77212

--

M
ile

a
g

e
 (

m
p

g
)

Weight (lbs.)
1,760 2,530 3,300 4,070 4,840

0

5

10

15

20

25

30

35

40

45

Figure 3. Mileage plotted against weight (points) with fitted cubic spline (line).

Finally, for the technical people, we can fit the same model yet again, using bspline instead of frencurv. Here,
the splines are B-splines rather than reference splines. The variable labels show the range of positive values of each
B-spline, delimited by knots, including the extra knots calculated by bspline. The parameters are expressed in
miles per gallon, but are not easy for non-mathematicians to interpret.

8 Post-publication update RBN-3

. bspline,xvar(weight) knots(1760(770)4840) gen(bs) power(3) labf(%4.0f)

. describe bs*
29. bs1 float %8.4f B-spline on [-550,2530)
30. bs2 float %8.4f B-spline on [220,3300)
31. bs3 float %8.4f B-spline on [990,4070)
32. bs4 float %8.4f B-spline on [1760,4840)
33. bs5 float %8.4f B-spline on [2530,5610)
34. bs6 float %8.4f B-spline on [3300,6380)
35. bs7 float %8.4f B-spline on [4070,7150)

. regress mpg bs*,noconst robust
Regression with robust standard errors Number of obs = 74

F(7, 67) = 618.91
Prob > F = 0.0000
R-squared = 0.9792
Root MSE = 3.3469

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--

bs1 | 8.530818 24.5484 0.348 0.729 -40.468 57.52964
bs2 | 36.83022 5.330421 6.909 0.000 26.19066 47.46979
bs3 | 19.41627 2.252816 8.619 0.000 14.91963 23.91291
bs4 | 21.45246 1.708278 12.558 0.000 18.04272 24.8622
bs5 | 11.62333 2.241923 5.185 0.000 7.148434 16.09823
bs6 | 25.14979 7.910832 3.179 0.002 9.359707 40.93988
bs7 | -48.57765 34.29427 -1.416 0.161 -117.0293 19.87399

--

Technical note

There are other programs in Stata to generate splines. mkspline (see [R] mkspline) generates a basis of linear
splines to be used in a design matrix, as does frencurv, power(1), but the basis is slightly different, because the
fitted parameters for frencurv are reference values, whereas the fitted parameters for mkspline are the local slopes
of the spline in the inter-knot intervals. William Dupont’s rc spline, downloadable from SSC, and Peter Sasieni’s
spline and spbase (Sasieni, 1994), from STB-22, are used for fitting a natural cubic spline, which is constrained to
be linear outside the completeness region, and is parameterized using the natural spline basis. (For more information
about natural cubic splines, see Durrlemain and Simon, 1999, and/or Harrell, 2001.) The splines fitted using bspline
or frencurv, on the other hand, are unconstrained (hence the extra degrees of freedom corresponding to the external
reference points), and parameterized using the B-spline or reference spline basis, respectively. frencurv and bspline
are therefore complementary to the other programs, and do not supersede them.

Saved results

bspline saves in r():
Scalars

r(xsup) upper bound of completeness region r(xinf) lower bound of completeness region

Macros

r(nincomp) number of X-values out of completeness region r(knots) final list of knots

r(splist) varlist of splines r(labfmt) format used in spline labels

r(type) storage type of splines (float or double) r(nknot) number of knots

r(nspline) number of splines r(power) power (or degree) of splines

r(xvar) X-variable specified by xvar option

Matrices

r(knotv) row vector of knots

frencurv saves all of the above results in r(), and also the following:
Macros

r(refpts) final list of reference points

Matrices

r(refv) row vector of reference points

The result r(nincomp) is the number of values of xvar outside the completeness region of the space of splines
defined by the reference splines or B-splines. The number lists r(knots) and r(refpts) are the final lists after any
left and right extensions carried out by bspline or frencurv, and the vectors r(knotv) and r(refv) contain the
same values in double precision (mainly for programmers). The scalars r(xinf) and r(xsup) are knots, such that
the completeness region is r(xinf) ≤ x < r(xsup).

Post-publication update 9

Historical note

This document is a post-publication update of an article which appeared in the Stata Technical Bulletin (STB) as
Newson (2000). After 2001, STB was replaced by The Stata Journal (SJ), and all subsequent updates only appeared
on SSC and on Roger Newson’s homepage at http://phs.kcl.ac.uk/rogernewson/, which is accessible from within
Web–aware Stata using the net command.

Acknowledgements

The idea for the name frencurv came from Nick Cox of Durham University, UK, who remarked that the method
was like an updated French curve when I described it on Statalist.

References
de Boor C. 1978. A practical guide to splines. New York: Springer Verlag.

Durrlemain S. and R. Simon. 1999. Flexible regression models with cubic splines. Statistics in Medicine 8: 551-561.

Harrell F. E. 2001. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression and Survival Analysis. New York:

Springer-Verlag.

Newson R. 2000. sg151: B-splines and splines parameterized by their values at reference points on the X-axis. Stata Technical Bulletin 57:

20-27. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 221-230.

Sasieni P. 1994. snp7: Natural cubic splines. Stata Technical Bulletin 22: 19-22. Reprinted in Stata Technical Bulletin Reprints, vol. 4,

pp. 171-174.

Unser M., A. Aldroubi and M. Eden. 1992. On the Asymptotic Convergence of B-spline Wavelets to Gabor Functions. IEEE Transactions

on Information Theory 38: 864-872.

Wold S. 1971. Analysis of Kinetic Data by Means of Spline Functions. Chemica Scripta 1: 97-102.

Wold S. 1974. Spline Functions in Data Analysis. Technometrics 16: 1-11.

Ziegler Z. One-Sided L1-Approximation by Splines of an Arbitrary Degree. In: Schoenberg I. J. (ed.), 1969. Approximations with Special

Emphasis on Spline Functions. New York: Academic Press.

